
Elements and the periodic table

- A. Element
 - 1. Definition _____a substance made of one kind of atom
 - a. Atom smallest particle of an element

2. Elements are represented by ____chemical symbols; one or two letters from the

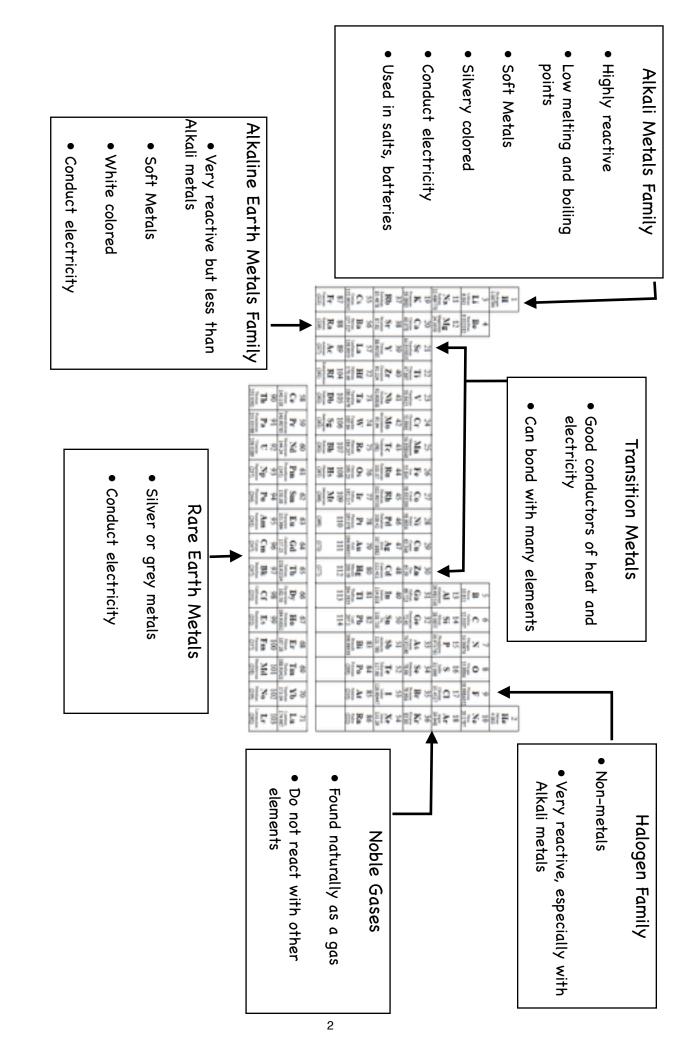
name of the element.

3. Examples Carbon C Gold __Au___

Oxygen O

Silver Ag

Chlorine Cl Iron Fe


4. When a chemical symbol is written the <u>first letter</u>

is always capitalized and the _____second letter_____ is never

capitalized.

- 5. Atomic Number ____number of protons in nucleus of an atom____
- B. Periodic Table
 - 1. Elements are arranged by <u>atomic number</u>
 - 2. Families ____groups of atoms with similar properties_
 - a. Chemical Properties __reactivity, flammability, pH___
 - b. Physical Properties __color, texture, boiling point___

M	\cap	lecu	وما
IV		CCU	

- A. Molecule __two or more atoms that are chemically combined
 - 1. can be broken down into <u>can be broken down into simpler substances</u>
 - 2. the properties of a molecule <u>are very different than the properties of the</u>
 elements from which they are made.
 - 3. Chemical Bond <u>force that holds atoms together in a molecule</u>

Pure Substances

- A. Pure Substances A substance that is made up of only one type of particle.
 - Cannot be <u>separated</u> by physical means, such as filtering, evaporation, etc.
 Example: The Hydrogen and Oxygen in H₂O molecules cannot be pulled apart physically.
 - 2. Each pure substance has it's own unique <u>Chemical</u> and <u>Physical</u> properties.
 - 3. Two types of pure substances are <u>Elements</u> and <u>Molecules</u>

Mixtures

- A. A mixture is a <u>physical</u> change where substances are mixed but NOT <u>chemically combined</u>
 - 1. Substances in a mixture <u>keep</u> most of their properties
 - 2. Substances in a mixture can be <u>added in any amount</u>
 - 3. All mixtures can be <u>separated</u> based on <u>physical</u> properties.

4.	Types of mixtures	Heterogeneous	Homogeneous
	Appearance	Parts appear different	Parts appear <u>the same</u>
	Particle Size	<u>Large</u>	<u>Small</u>
	Separation	<u>Easy</u>	<u>Difficult</u>
	Examples	Pizza, Chex Mix, Salad	Spice mix, toothpaste

2016/17

Solutions

A.	A type of mixture where one substance is	dissolved	in another substance.

1. <u>Solvent</u> = the part that DOES the dissolving Example <u>water</u>

2. <u>Solute</u> = the part that GETS dissolved Example <u>kool-aid mix</u>

3. Solubility = The amount of <u>solute</u> that dissolves at a certain <u>temperature</u>

4. Solubility <u>increases</u> with temperature

5. <u>Insoluble</u> = Substances that do not dissolve

Chemical Formulas

A. Definition <u>combinations of chemical symbols</u>

1. Used to represent <u>molecules</u>

a. Examples

Molecule	Formula
Water	H ₂ O
Oxygen Molecule	O_2
Ammonia	NH_3
Carbon Dioxide	CO_2
Chlorine Molecule	Cl ₂

b.	Subscripts	the number of atoms of each element in that molecule			
	If there is no s	subscript there is	one	atom of that element.	

Chemical Equations

A. Chemical reaction <u>rearranging atoms to form new substances</u>

1. Examples of chemical reactions <u>baking, rusting, burning</u>

- _____
- 2. Reactions are represented by <u>chemical equations</u>
- 3. Arrow means <u>produces</u>
- 4. Balanced by <u>adding coefficients (numbers) before the chemical formulas so</u> there are equal numbers of each type of atom on both sides of the arrow.
 - a. Balancing equations shows the actual chemical reaction amounts that prove that matter is not <u>Created</u> or <u>Destroyed</u> in a chemical reaction.

Examples:

Reactants - Substances that are combined to cause the chemical reaction.

Products - Substances that are made by the chemical reaction.

2H₂ + O₂ -----> 2H₂O

coefficients

$$Zn + 2CrCl_3 ----> 2CrCl_2 + ZnCl_2$$

- b. 4 indicators of chemical change
 - #1 <u>temperature change</u>
- #3 gas is given off
- #2 <u>color change</u>
- #4 <u>a new substance is formed</u>

